Clock.jpg

Quantum thermal machines

The efficient conversion of energy at the nanoscale is currently a much sought-after scientific prize. This ability will unlock tiny cooling and energy-harvesting devices that could be integrated with other miniaturised technologies or incorporated non-invasively into large-scale systems. At these small scales, quantum effects take hold and can significantly affect performance. We study the theoretical foundations and basic design principles of quantum thermal machines, and propose realisations with electronic and atomic systems.

Related work

A. Rignon-Bret, G. Guarnieri, J. Goold, and M. T. Mitchison, Thermodynamics of precision in quantum nanomachines, Phys. Rev. E 103, 012133 (2021), arXiv:2009.11303

N. Pancotti, M. Scandi, M. T. Mitchison, and M. Perarnau-Llobet, Speed-Ups to Isothermality: Enhanced Quantum Thermal Machines through Control of the System-Bath Coupling, Phys. Rev. X 10, 031015 (2020)

D. von Lindenfels, O. Gräb, C. T. Schmiegelow, V. Kaushal, J. Schulz, M. T. Mitchison, J. Goold, F. Schmidt-Kaler, and U. G. Poschinger, Spin Heat Engine Coupled to a Harmonic-Oscillator Flywheel, Phys. Rev. Lett. 123, 080602 (2019), arXiv:1808.02390

M. T. Mitchison, Quantum thermal absorption machines: refrigerators, engines and clocks, Contemporary Physics 60, 164 (2019), arXiv:1902.02672

Previous
Previous

Quantum stochastic processes

Next
Next

Quantum non-equilibrium steady states